FEATURE CLUSTERING FOR PSO-BASED FEATURE CONSTRUCTION ON HIGH-DIMENSIONAL DATA
نویسندگان
چکیده
منابع مشابه
Using Feature Clustering for GP-Based Feature Construction on High-Dimensional Data
Feature construction is a pre-processing technique to create new features with better discriminating ability from the original features. Genetic programming (GP) has been shown to be a prominent technique for this task. However, applying GP to high-dimensional data is still challenging due to the large search space. Feature clustering groups similar features into clusters, which can be used for...
متن کاملFeature Selection for Clustering on High Dimensional Data
This paper addresses the problem of feature selection for the high dimensional data clustering. This is a difficult problem because the ground truth class labels that can guide the selection are unavailable in clustering. Besides, the data may have a large number of features and the irrelevant ones can ruin the clustering. In this paper, we propose a novel feature weighting scheme for a kernel ...
متن کاملHigh Dimensional Data Clustering Using Fast Cluster Based Feature Selection
Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of fea...
متن کاملImproved PSO for Feature Selection on High-Dimensional Datasets
Classification on high-dimensional (i.e. thousands of dimensions) data typically requires feature selection (FS) as a pre-processing step to reduce the dimensionality. However, FS is a challenging task even on datasets with hundreds of features. This paper proposes a new particle swarm optimisation (PSO) based FS approach to classification problems with thousands or tens of thousands of feature...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Information and Communication Technology
سال: 2019
ISSN: 2180-3862,1675-414X
DOI: 10.32890/jict2019.18.4.3